The Correspondence between Geometric Quantization and Formal Deformation Quantization

نویسنده

  • ELI HAWKINS
چکیده

Using the classification of formal deformation quantizations, and the formal, algebraic index theorem, I give a simple proof as to which formal deformation quantization (modulo isomorphism) is derived from a given geometric quantization.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

فرمولبندی هندسی کوانتش تغییرشکل برزین

  In this paper we try to formulate the Berezin quantization on projective Hilbert space P(H) and use its geometric structure to construct a correspondence between a given classical theory and a given quantum theory. It wil be shown that the star product in berezin quantization is equivalent to the Posson bracket on coherent states manifold M, embodded in P(H), and the Berezin method is used to...

متن کامل

Deformation quantization of algebraic varieties

The paper is devoted to peculiarities of the deformation quantization in the algebro-geometric context. A direct application of the formality theorem to an algebraic Poisson manifold gives a canonical sheaf of categories deforming coherent sheaves. The global category is very degenerate in general. Thus, we introduce a new notion of a semiformal deformation, a replacement in algebraic geometry ...

متن کامل

How to Calculate the Fedosov Star–product (exercices De Style)

This is an expository note on Fedosov’s construction of deformation quantization. Given a symplectic manifold and a connection on it, we show how to calculate the star-product step by step. We draw simple diagrams to solve the recursive equations for the Fedosov connection and for flat sections of the Weyl algebra bundle corresponding to functions. We also reflect on the differences of symplect...

متن کامل

Deformation Quantization - a Brief Survey

Quantization is, most broadly, the process of forming a quantum mechanical system starting from a classical mechanical one. See (Be) for an early attempt to obtain a general definition of quantization. (AbM) also provides an introductory account of the subject. There are various methods of quantization; see (BW) for a general introduction to the geometry of quantization, and a specific geometri...

متن کامل

Nonperturbative effects in deformation quantization

The Cattaneo-Felder path integral form of the perturbative Kontsevich deformation quantization formula is used to explicitly demonstrate the existence of nonperturbative corrections to näıve deformation quantization. The physical context of the formal problem of deformation quantization is the original one set out by Dirac [1] in making the substitution

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008